Challenge Problems in Bioinformatics and Computational Biology from Other Reports

B.1 GRAND CHALLENGES IN COMPUTATIONAL BIOLOGY (David Searls)¹

- 1. Protein structure prediction
- 2. Homology searches
- 3. Multiple alignment and phylogeny construction
- 4. Genomic sequence analysis and gene-finding

B.2 OPPORTUNITIES IN MOLECULAR BIOMEDICINE IN THE ERA OF TERAFLOP COMPUTING (Klaus Schulten et al.)²

- 1. Study protein-protein and protein-nucleic acid recognition and assembly
- 2. Investigate integral functional units (dynamic form and function of large macromolecular and supramolecular complexes)
- 3. Bridge the gap between computationally feasible and functionally relevant time scales
- 4. Improve multiresolution structure prediction
- 5. Combine classical molecular dynamics simulations with quantum chemical forces
- 6. Sample larger sets of dynamical events and chemical species
- 7. Realize interactive modeling
- 8. Foster the development of biomolecular modeling and bioinformatics
- 9. Train computational biologists in teraflop technologies, numerical algorithms, and physical concepts
- 10. Bring experimental and computational groups in molecular biomedicine closer together.

¹D. Searls, "Grand Challenges in Computational Biology," Computational Methods in Molecular Biology, S. Salzberg, D. Searls, and Simon Kasif, eds., Elsevier Science, 1998.

²K. Schulten, G. Budescu, F. Molnar, *Opportunities in Molecular Biomedicine in the Era of Teraflop Computing*, NIH Resource for Macromolecular Modeling and Bioinformatics, March 3-4, 1999, Rockville, MD; see http://whitepapers.zdnet.co.uk/0,39025945,60014729p-39000617q,00.htm.

430 CATALYZING INQUIRY

B.3 WORKSHOP ON MODELING OF BIOLOGICAL SYSTEMS (Peter Kollman and Simon Levin)³

Challenging Issues That Span All Areas of Modeling Systems

A. Integrating data and developing models of complex systems across multiple spatial and temporal scales

- Scale relations and coupling
- Temporal complexity and coding
- Parameter estimation and treatment of uncertainty
- Statistical analysis and data mining
- Simulation modeling and prediction

B. Structure-function relationships

- Large and small nucleic acids
- Proteins
- Membrane systems
- General macromolecular assemblies
- Cellular, tissue, organismal systems
- Ecological and evolutionary systems

C. Image analysis and visualization

- Image interpretation and data fusion
- Inverse problems
- Two-, three- and higher-dimensional visualization and virtual reality

D. Basic mathematical issues

- Formalisms for spatial and temporal encoding
- Complex geometry
- Relationships between network architecture and dynamics
- Combinatorial complexity
- Theory for systems that combine stochastic and nonlinear effects often in partially distributed systems

E. Data management

- Data modeling and data structure design
- Query algorithms, especially across heterogeneous data types
- Data server communication, especially peer-to-peer replication
- Distributed memory management and process management

B.4 WORKSHOP ON NEXT-GENERATION BIOLOGY: THE ROLE OF NEXT-GENERATION COMPUTING (Shankar Subramaniam and John Wooley)⁴

Exemplar Challenges for Bioinformatics and Computational Biology

- 1. Full genome-genome comparisons
- 2. Rapid assessment of polymorphic genetic variations

 $^{^3}$ "Modeling of Biological Systems," P. Kollman and S. Levin (chairs), a workshop at the National Science Foundation, March 14 and 15, 1996, available at http://www.resnet.wm.edu/~jxshix/math490/Modeling%20of%20Biological%20Systems.htm.

⁴S. Subramaniam and J. Wooley, DOE-NSF-NIH 1998 Workshop on Next-Generation Biology: The Role of Next Generation Computing, available at http://cbcg.lbl.gov/ssi-csb/nextGenBioWS.html.

APPENDIX B 431

- 3. Complete construction of orthologous and paralogous groups of genes
- 4. Structure determination of large macromolecular assemblies/complexes
- 5. Dynamical simulation of realistic oligomeric systems
- 6. Rapid structural/topological clustering of proteins
- 7. Prediction of unknown molecular structures; protein folding
- 8. Computer simulation of membrane structure and dynamic function
- 9. Simulation of genetic networks and the sensitivity of these pathways to component stoichiometry and kinetics
- 10. Integration of observations across scales of vastly different dimensions and organization to yield realistic environmental models for basic biology and societal needs

B.5 TECHNOLOGIES FOR BIOLOGICAL COMPUTER-AIDED DESIGN (Masaru Tomita)⁵

- 1. Enzyme engineering: to refine enzymes and to analyze kinetic parameters in vitro
- 2. Metabolic engineering: to analyze flux rates in vivo
- 3. Analytical chemistry: to determine and analyze the quantity of metabolites efficiently
- 4. Genetic engineering: to cut and paste genes on demand, for modifying metabolic pathways
- 5. Simulation science: to efficiently and accurately simulate a large number of reactions
- 6. Knowledge engineering: to construct, edit and maintain large metabolic knowledge bases
- 7. Mathematical engineering: to estimate and tune unknown parameters

B.6 TOP BIOINFORMATICS CHALLENGES (Chris Burge et al.)6

- 1. Precise, predictive model of transcription initiation and termination: ability to predict where and when transcription will occur in a genome
- 2. Precise, predictive model of RNA splicing/alternative splicing: ability to predict the splicing pattern of any primary transcript
- 3. Precise, quantitative models of signal transduction pathways:ability to predict cellular response to external stimuli
- 4. Determining effective protein-DNA, protein-RNA and protein-protein recognition codes
- 5. Accurate ab initio structure prediction
- 6. Rational design of small molecule inhibitors of proteins
- 7. Mechanistic understanding of protein evolution: understanding exactly how new protein functions evolve
- 8. Mechanistic understanding of speciation: molecular details of how speciation occurs
- 9. Continued development of effective gene ontologies-systematic ways to describe the functions of any gene or protein
- 10. (Infrastructure and education challenge)
- 11. Education: development of appropriate bioinformatics curricula for secondary, undergraduate, and graduate education

B.7 EMERGING FIELDS IN BIOINFORMATICS (Patricia Babbitt)⁷

- 1. Data storage and retrieval, database structures, annotation
- 2. Analysis of genomic/proteomic/other high-throughput information

⁵M. Tomita, "Towards Computer Aided Design (CAD) of Useful Microorganisms," *Bioinformatics* 17(12):1091-1092, 2001.

⁶C. Burge, "Bioinformaticists Will Be Busy Bees," *Genome Technology*, No. 17, January, 2002. Available (by free subscription) at http://www.genome-technology.com/articles/view-article.asp?Article=20021023161457.

⁷P. Babbitt et al., "A Very Very Short Introduction to Protein Bioinformatics," August 22-23, 2002, University of California, San Francisco, available at http://baygenomics.ucsf.edu/education/workshop1/lectures/w1.print2.pdf.

432 CATALYZING INQUIRY

- 3. Evolutionary model building and phylogenic analysis
- 4. Architecture and content of genomes
- 5. Complex systems analysis/genetic circuits
- 6. Information content in DNA, RNA, protein sequences and structure
- 7. Metabolic computing
- 8. Data mining using machine learning tools, neural nets, artificial intelligence
- 9. Nucleic acid and protein sequence analyses

B.8 TEN GRAND CHALLENGES (Sylvia Spengler)8

- 1. The origin, structure, and fate of the universe
- 2. The fundamental structure of matter
- 3. Earth's physical systems
- 4. The diversity of life on Earth
- 5. The tree of life
- 6. The language of life
- 7. The web of life
- 8. Human ecology
- 9. The brain and artificial thinking machines
- 10. Integrating Earth and human systems
- 11. A knowledge server for planetary management

Research Across Domains: Data

- Information management—human evolution continued
- Exponential increase in data and information across domains
- Access to information across domains—as or more important than the information itself
- Integration of data across knowledge domains
- Apply analytical tools across knowledge domains
- Modeling of complex systems
- Simulation of phenomena—descriptive science becomes predictive science

Research Across Domains: People

- Share data across disciplines
- Build and use analytical and modeling tools across disciplines
- Work in collaborative, cross-domain groups

Research Across Domains: Time

- Real-time data access, integration, and analysis
- Real-time modeling and effects prediction
- Real-time dissemination of research results
- Real-time testing by research community
- Real-time policy discussions
- Real-time policy decisions

⁸S. Spengler, Lawrence Berkeley National Laboratory, personal communication to John Wooley, January 3, 2005.

APPENDIX B 433

B.9 GRAND CHALLENGES IN BIOMEDICAL COMPUTING (John A. Board, Jr.)9

Biomedical Applications from Coupling Imaging and Modeling

- Real-time noninvasive three-dimensional imaging of many body systems
- Real-time generation of three-dimensional patient-specific models
- Multiple-technology (multimodal) imaging and modeling
- Whole-organ modeling
- Multiple-organ system modeling
- Patient-specific modeling of organ anomalies
- Model support for (partial) restoration of hearing, coarse vision, and locomotion (via both paralyzed and artificial limbs)

All of these applications make use of:

- Three-dimensional models
- Increasingly refined grids and increasing levels of tissue discrimination
- Anatomically realistic models
- Special-purpose hardware for visualization
- Distributed computing techniques.

B.10 ACCELERATING MATHEMATICAL-BIOLOGICAL LINKAGES: REPORT OF A JOINT NSF-NIH WORKSHOP (Margaret Palmer et al.)¹⁰

List of Top Ten Problems at the Mathematical Biology Interface

- 1. Model multilevel systems: from the cells in people, to human communities in physical, chemical, and biotic ecologies.
- 2. Model networks of complex metabolic pathways, cell signaling, and species interactions.
- 3. Integrate probabilistic theories: understand uncertainty and risk.
- 4. Understand computation: gaining insight and proving theorems from numerical computation and agent-based models.
- 5. Provide tools for data mining and inference.
- 6. Address linguistic and graph theoretical approaches.
- 7. Model brain function.
- 8. Build computational tools for problems with multiple temporal and spatial scales.
- 9. Provide ecological forecasts.
- 10. Understand effects of erroneous data on biological understanding.

B.11 GRAND CHALLENGES OF MULTIMODAL BIOMEDICAL SYSTEMS (J. Chen et al.)¹¹

Science Challenges

1. Allow early detection of where and when an infectious disease outbreak occurs, whether it is naturally occurring or man-made, in real time.

⁹J.A. Board, Jr., "Grand Challenges in Biomedical Computing, *High-Performance Computing in Biomedical Research*, T.C. Pilkington, B. Loftis, J.F. Thompson, S.L.Y. Woo, T.C. Palmer, and T.F. Budinger, eds., CRC Press, Boca Raton, FL, 1993.

¹⁰M. Palmer et al., "Accelerating Mathematical-Biological Linkages: Report of a Joint NSF-NIH Workshop," February 2003, available at www.maa.org/mtc/NIH-feb03-report.pdf.

¹¹J. Chen et al., "Grand Challenges of Multimodal Bio-Medical Systems," *IEEE Circuits and Systems Magazine*, pp. 46-52, 2nd Quarter 2005, available at http://gsp.tamu.edu/Publications/PDFpapers/pap_CASmag_MBM.pdf.

434 CATALYZING INQUIRY

2. Develop multidimensional drug profiling databases to facilitate drug discovery and to identify biomarkers for diagnosis and monitoring the progress of individual disease treatments.

- 3. Connect activities and events derived from cellular processes to high-level cognitions.
- 4. Support personalized medical care and clinical decision for patients

Technology Challenges and Enabling Technologies

- 1. Formalization of biological knowledge into predictive models for systems biology and systembased analysis
- 2. Interdisciplinary training
- 3. Development of open source, multiscale modality informatics toolkits

B.12 THE DEPARTMENT OF ENERGY'S GENOMES TO LIFE PROGRAM¹²

21st Century Biology Requiring "Biocomp" Tools

- 1. Population models, symbiosis, and stability
- 2. Discrete growth models
- 3. Reaction kinetics
- 4. Biological oscillators and switches
- 5. Coupled oscillators
- 6. Reaction-diffusion, chemotaxis, and nonlocality
- 7. Oscillator-generated wave phenomena and patterns
- 8. Spatial pattern formation with population interactions
- 9. Mechanical models for generating pattern and form in development
- 10. Evolution and morphogenesis

A Mathematica for Molecular, Cellular, and Systems Biology

- 1. Core data models and structures [database management]
- 2. Optimized functions [core libraries]
- 3. Scripting environment [e.g., Python, PERL, ruby, etc.]
- 4. Database accessors and built-in schemas
- 5. Simulation interfaces
- 6. Parallel and accelerated kernels
- 7. Visualization interfaces (for information visualization and scientific visualization)
- 8. Collaborative workflow and group use interfaces

Hierarchical Biological Modeling Environment

- 1. Genetic sequences
- 2. Molecular machines
- 3. Molecular complexes and modules
- 4. Networks + pathways [metabolic, signaling, regulation]
- 5. Structural components [ultrastructures]
- 6. Cell structure and morphology
- 7. Extracellular environment
- 8. Populations and consortia

¹²R. Stevens, "GTL Software Infrastructure: A Computer Science Perspective," undated presentation, Argonne National Laboratory, available at www.doegenomics.org/compbio/mtg_1_22_02/RickStevens.ppt.

APPENDIX B 435

Modeling and Simulation Challenges for 21st Century Biology

- 1. Modeling activity of single genes
- 2. Probabilistic models of prokaryotic genes and regulation
- 3. Logical models of regulatory control in eukaryotic systems
- 4. Gene regulation networks and genetic network inference in computational models and applications to large-scale gene expression data
- 5. Atomistic-level simulation of biomolecules
- 6. Diffusion phenomena in cytoplasm and extracellular environment
- 7. Kinetic models of excitable membranes and synaptic interactions
- 8. Stochastic simulation of cell signaling pathways
- 9. Complex dynamics of cell cycle regulation
- 10. Model simplification

B.13 HIGH-PERFORMANCE COMPUTING, COMMUNICATION, AND INFORMATION TECHNOLOGY GRAND CHALLENGES (LATE 1980s, EARLY 1990s)¹³

Computing Applications to Map and Sequence Human Genome

- 1. Understanding protein folding
- 2. Predicting structure of native protein
- 3. Exhaustive discovery and analysis of cancer genes
- 4. Molecular recognition and dynamics
- 5. Drug discovery

¹³Committee on Physical, Mathematical, and Engineering Sciences of the Federal Coordinating Council for Science, Engineering, and Technology, U.S. Office of Science and Technology Policy, FY1992 Blue Book: *Grand Challenges: High Performance Computing and Communications—The FY 1992 U.S. Research and Development Program.*